10 things I wish I'd known as a new graduate about stroke and upper limb retraining

Presented by

Dr Annie McCluskey PhD MA DipCOT Discipline of Occupational Therapy

SYDNEY

Aims

- Highlight changes in research and knowledge
- Propose a curricula for teaching upper limb analysis and training

Take-Home Messages: I wish I had learned earlier to...

- Be a movement scientist
 - Know your anatomy & understand biomechanics - Use video technology for task analysis and feedback
- Focus on negative impairments (ie weakness) not spasticity
- Coach well to motivate learners Goals, instructions & feedback; enable active participation: Hands off
- Offer (and teach) evidence-based /informed therapies
- Clinical guidelines, systematic reviews, RCTs, biases in research
- Listen to the preferences, goals and priorities of stroke survivors
- Show leadership; be prepared to change; offer /teach effective therapies & discontinue ineffective outdated therapies

Movement Science

- The study of movement
- Factors influencing movement
- Understanding of how people learn motor tasks and acquire skills
- Neuroplasticity
- Task-specific training

Carr, Shepherd, Gordon, Gentile & Held (1987). Movement science: Foundations for physical therapy in rehabilitation. Heinemman

Importance of muscles that transport the hand during reaching

- Shoulder flexors: Anterior deltoid, pectoralis major/minor, biceps brachii, coracobrachialis
- External rotators: Supraspinatus, infraspinatus, teres minor, posterior deltoid

Applied Biomechanics

University of Sydne

- Definition: The study of forces, and the effects of those forces on, and within, the body
 - Kinematics: What we see: Joint displacements/changes, trajectory, time, acceleration/deceleration
 - Kinetics: Forces that cause movement: Torque, gravity, friction
- OT/OP models refer to 'biomechanical' & 'physical' but....
 - Little or no reference to the science of kinematics and kinetics
 Refer to range of movement, strength, coordination, grasp, 'tone'

Be a movement scientist

- Hypothesise about the causes of observed movement differences
- Observe/ assess muscle activity during reach/manipulation:
 Which muscles should be active (eg anterior deltoid) ?
 - Are those muscles contracting $\ldots\ldots$ or not ?
 - What looks different ?
- Hypothesise at the level of clinical intervention
 - Weak anterior deltoid => task-specific strength training + e-stim

Exercise to improve control of hair elastic

- **Purpose**: To improve coordination and strength of:
 - Thumb abduction & IP extension
 - Finger IP/MCP extension
 - Finger abduction
- Instructions: Place the elastic around thumb/fingers – hold the elastic at nail level – place elastic over jar

Positive v Negative Impairments (Ada & Canning 2005)

- Positive impairments: Additions to body functions
 - Abnormal reflexes, postures
 - Spasticity
- Negative impairments: Loss of body functions
 - Paralysis or inability to contract muscles
 - Loss of muscle strength, coordination, sensation

Analysis: Using a fork

UL goals for 2-we	oals for 2-week CIMT program			
Steve	OP Problem	Importance	Performance T1	Satisfaction T1
• Taxi driver, poker	Dribbling basketball	5	2	3
player, basketball coach	Tapping to music	5	3	1
• ~ 4 yrs post-stroke	Dealing cards	5	5	1
 Lives in rural area 	Shooting 3 pointers	3	1	1
	Play a season of basketball 6 1 1 Total Scores 24 12 7	1		
1 BASA		7		
	Average Scores	4.8	2.4	1.4
Tr	Acknowledgement: Louise Massie, Townsville-Mackay Medicare Local			

Manipulating a fork

Day 1 After 30 mins of practice: 2 reps in **7 secs**

Manipulating a fork

Day 2 After overnight practice: 2 reps in **4 secs**

Assisted Elbow Flexion/ Extension with Electrical Stimulation

CIMT program component	Quantity of practice	
Shaping tasks	9,639 reps	
unctional activities	84 reps	
lime completing functional activities (where repetitions are difficult to quantify e.g. eating a neal)	353 mins	
Homework	3,949 reps	
Homework time recorded (where repetitions are difficult to quantify)	425 mins	
TOTAL =	13, 672 reps +	

EBP Skills & Knowledge

- Search & critical appraisal
- Understand biases in research
- Systematic reviews and RCTs
- Clinical guidelines

Hoffmann, Bennett & Del Mar (2017)

EBP: Listen to stroke survivors

- Benefits of qualitative research
- Their experiences, goals and priorities
- Values and preferences of clients/patients
 - Key part of EBP process

Take-Home Messages: I wish I had learned earlier to...

- Be a movement scientist
- Know your anatomy & understand biomechanics
- Use video technology for task analysis and feedback
- Focus on negative impairments (ie weakness) not spasticity
- Coach well to motivate learners
- Goals, instructions & feedback; enable active participation: Hands off
 Offer (and teach) evidence-based /informed therapies
 - Clinical guidelines, systematic reviews, RCTs, biases in research
 - Listen to the preferences, goals and priorities of stroke survivors
 - Show leadership; be prepared to change; offer /teach effective therapies & discontinue ineffective outdated therapies

